*[[Problem 159:http://projecteuler.net/index.php?section=problems&id=159]] [#q5fa39f4]

合成数は多くの異なった方法で因数分解することができる。例えば、1を含めないとすると、24は以下の7通りに因数分解される。

24 = 2x2x2x3~
24 = 2x3x4~
24 = 2x2x6~
24 = 4x6~
24 = 3x8~
24 = 2x12~
24 = 24

ある数について、各桁の数字を足し合わせることを10未満になるまで繰り返したときに得られる数を、digital root と呼ぶことにする。つまり、467のdigital rootは8となる。

それぞれの因数のdigital rootの和をDigital Root Sum(DRS)と呼ぶことにする。~
以下の表に24のDRSを示す。
|''因数分解''|''Digital Root Sum''|
|2x2x2x3|9|
|2x3x4|9|
|2x2x6|10|
|4x6|10|
|3x8|11|
|2x12|5|
|24|6|

24のDigital Root Sumの最大値は11となる。~
mdrs(n) を、nのDigital Root Sumの最大値と定義する。つまり、mdrs(24) = 11 となる。~
1 < n < 1,000,000 について ∑mdrs(n) を求めよ。

トップ   新規 一覧 単語検索 最終更新   ヘルプ   最終更新のRSS