July to September and http://home2africa.com/members/Find-Contact-Lens-Right-Here--k-uu.aspx contact lens removal soft and  zzom and http://dotnetis.finally.in/members/Find-Loan-Consolidation-Right-Here--p-xx.aspx us debt consolidation help us and  8( and http://findingmichael.com/members/Find-Home-Equity-Right-Here--x-ny.aspx mortgage home loans home equity loan and  khojqu and http://steety.com/members/Find-Adult-Dating-Sites-Right-Here--h-ij.aspx single parent dating anchorage alaska and  ydv and http://www.rkuo.com/members/Find+Cooking+Class+Right+Here++v+gl.aspx the great commission cooking rotation workshop and  :[[ and http://winphonezone.in.th/members/Find-Cheap-Flights-Right-Here--i-di.aspx airfares paris to gothenburg and  slmwwx and http://www.thestaceyprussmanshow.com/community/members/Find-Moving-Company-Right-Here--x-fp.aspx prime mover efficiency and  %[[[ and http://shoppingconfidential.com/members/Find-Cosmetic-Surgery-Right-Here--q-gn.aspx doctor soliday oral surgeon maryland and  806 and http://colossuscorporation.com/iCrypt/members/Find+Personal+Cash+Loan+Right+Here++v+sn.aspx credit bad credit personal loans free and  =-D and http://inflammablerecords.com/forum/members/Find-Vacation-Deals-Right-Here--j-mx.aspx resort quest at executive centre hotel and  %-OOO and http://www.robertlacroix.com/cs/members/Find+Diet+Weight+Loss+Right+Here++g+tf.aspx hills science diet prescription t d and  730 and
*[[Problem 212:http://projecteuler.net/problem=212]] 「結合直方体の体積」 [#o334d683]

座標軸に平行な直方体 (axis-aligned cuboid) は {&tex{(x_{0}, y_{0}, z_{0}), (dx, dy, dz)};} で与えられ, &tex{x_{0}}; ≤ X ≤ &tex{x_{0} + dx};,
&tex{y_{0}}; ≤ Y ≤ &tex{y_{0} + dy};,
&tex{z_{0}}; ≤ Z ≤ &tex{z_{0} + dz};,
を満たす点で構成される.
直方体の体積は &tex{dx × dy × dz};で求められる.
複数の直方体を結合したものの体積を考えた場合, 直方体に重なりがあれば, 結合直方体の体積は
それぞれの直方体の体積の和より小さくなる.

&tex{C_{1}};, …, &tex{C_{50000}}; を以下のパラメータで与えられる座標軸に平行な直方体とする.
- &tex{x_{0}}; = &tex{S_{6n-5}}; modulo 10000
- &tex{y_{0}}; = &tex{S_{6n-4}}; modulo 10000
- &tex{z_{0}}; = &tex{S_{6n-3}}; modulo 10000
- &tex{dx}; = 1 + (&tex{S_{6n-2}}; modulo 399)
- &tex{dy}; = 1 + (&tex{S_{6n-1}}; modulo 399)
- &tex{dz}; = 1 + (&tex{S_{6n}}; modulo 399)

&tex{S_{1}};,…,&tex{S_{300000}}; はラグ付きフィボナッチ法により生成される.
-  1 ≤ &tex{k}; ≤ 55 の場合, &tex{S_{k}}; = [100003 - 200003&tex{k}; + 300007&tex{k^{3}};] (modulo 1000000)
- 56 ≤ &tex{k}; の場合, [&tex{S_{k-24}}; + &tex{S_{k-55}};] (modulo 1000000)

したがって, &tex{C_{1}}; は {(7, 53, 183), (94, 369, 56)}, &tex{C_{2}}; は {(2383, 3563, 5079), (42, 212, 344)} となる

&tex{C_{1}};, …, &tex{C_{100}}; の結合直方体の体積は 723581599 である.

&tex{C_{1}};, …, &tex{C_{50000}}; の結合直方体の体積を求めよ.


トップ   新規 一覧 単語検索 最終更新   ヘルプ   最終更新のRSS