*[[Problem 73:http://projecteuler.net/problem=73]] 「範囲内の分数の数え上げ」 [#q408f033]
*[[Problem 73:http://projecteuler.net/problem=73]] 「ある範囲内の分数の数え上げ」 [#q408f033]

&tex{n};と&tex{d};を正の整数として, 分数 &tex{n};/&tex{d}; を考えよう. &tex{n};<&tex{d}; かつ HCF(&tex{n,d};)=1 のとき, 真既約分数と呼ぶ.

&tex{d}; ≤ 8 について既約分数を大きさ順に並べると, 以下を得る:

CENTER:
1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, ''3/8'', ''2/5'', ''3/7'', 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8

1/3と1/2の間には3つの分数が存在することが分かる.

では, d ≤ 12,000 について真既約分数をソートした集合では, 1/3 と 1/2 の間に何個の分数があるか?

トップ   編集 差分 バックアップ 添付 複製 名前変更 リロード   新規 一覧 単語検索 最終更新   ヘルプ   最終更新のRSS