*[[Problem 273:http://projecteuler.net/problem=273]] 「平方数の和」 [#e0cbe160]

次の等式について考える: a&sup{2}; + b&sup{2}; = N, 0 ≤ a ≤ b, a,b,N は整数.

たとえば N=65 では 2 つ解がある:

a=1, b=8 と a=4, b=7 である.

S(N) を a&sup{2}; + b&sup{2}; = N (0 ≤ a ≤ b, a,b,N は整数) の全ての解の a の値の和とする.

つまり S(65)=1+4=5 である.

平方因子を持たなく, 150 未満の 4k+1 で表せる素数でしか割りきれない全ての N について ΣS(N) を求めよ.

トップ   編集 差分 バックアップ 添付 複製 名前変更 リロード   新規 一覧 検索 最終更新   ヘルプ   最終更新のRSS