*[[Problem 137:http://projecteuler.net/problem=137]] 「フィボナッチ金塊」 [#t4b1cc19]

フィボナッチ数列 &tex{F_{k} = F_{k-1} + F_{k-2}, F_{1} = 1, F_{2} = 1 (F_{k} = 1, 1, 2, 3, 5, 8, ...)}; によって与えられる無限級数 &tex{A_{F}(x) = xF_{1} + x^{2}F_{2} + x^{3}F_{3} + ...}; を考える.

この問題では, &tex{A_{F}(x)}; が正の整数となるような x の値について考える.
驚くべきことに,
&tex{A_{F}(1/2) = (1/2).1 + (1/2)^{2}.1 + (1/2)^{3}.2 + (1/2)^{4}.3 + (1/2)^{5}.5 + ... = 1/2 + 1/4 + 2/8 + 3/16 + 5/32 + ... = 2};である.

最初の5つの自然数に対する x の値を下表に示す.
|x|&tex{A_{F}(x)};|
|√2−1|1|
|1/2|2|
|(√13−2)/3|3|
|(√89−5)/8|4|
|(√34−3)/5|5|

xが有理数のときの&tex{A_{F}(x)};の値を, 非常に稀なので, 金塊 (golden nugget) と呼ぶ. 実際, 10番目の金塊は74049690である.
xが有理数のときの&tex{A_{F}(x)};の値を, 非常に稀なので, "金塊" (golden nugget) と呼ぶ. 実際, 10番目の"金塊"は74049690である.

15番目の金塊を求めよ.

15番目の"金塊"を求めよ.

トップ   編集 差分 バックアップ 添付 複製 名前変更 リロード   新規 一覧 単語検索 最終更新   ヘルプ   最終更新のRSS